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Abstract

The prediction of the dynamic behaviour of a chemical process is important for reactor design, optimization and safety. It is, however, beset with
uncertainties of both, models and their input data. The latter are addressed here and the influence of uncertainties of key parameters, i.e. the heat of
reaction, the reaction rate constant and the apparent energy of activation, on the calculation results and the conclusions drawn from them is shown.
The conventional approach for the propagation of uncertainties through calculations, the Monte-Carlo method, is compared with calculations using
polynomial chaos. The latter require considerably less time for calculation and are hence better suited for parameter variations, which are always
needed in the design process. Both approaches are applied to an existing plant for manufacturing the explosive hexogen and illustrated by showing
the evolution of the concentration of the product with time and the associated uncertainties. The ranges of predicted production quantities and
raw material consumption as well as the impact of uncertainties on designing the dumping system for preventing a runaway reaction after cooling

failure are also presented.
© 2007 Published by Elsevier B.V.
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1. Introduction

Uncertainties in engineering calculations affect both, models
and their input data. The latter are addressed here. Among the
sources of data uncertainties figure the following (cf. [1]):

1. systematic error (due to biases in measuring apparatuses and
experimental procedures);

2. transfer of data measured in a specific environment (e.g.
laboratory) to industrial conditions;

3. insufficient knowledge (due to economic or other con-
straints);

4. random errors and unavoidable statistical variations (due to
unavoidable imperfections in measurement);

5. variability (due to fluctuations of a quantity with time, e.g.
heat transfer coefficient owing to instabilities of flow);

6. inherent randomness (as a consequence of the Heisenberg
indeterminacy).
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Whilst the uncertainties due to lack of knowledge, also called
epistemic, i.e. (1)—~(3), may be reduced, although the effort
required may be an obstacle, stochastic uncertainties, i.e. (4)—(6),
will always be present. Both types of uncertainties are usually
described by probability distributions.

Lack of knowledge concerning data for chemical reactor cal-
culations can manifest itself by their dearth or even absence,
so that (uncertain) analogies, expert judgment and the like have
to be used. Uncertainty may also result from the co-existence
of several different data for the same parameter, each of which
potentially applies to the problem at hand.

The relevance of uncertainties stems from their impact on
simulation results. They affect the design and optimization
of a system and, in particular, the design of safety-relevant
features. If not heeded, over or underdesign may be the conse-
quence. In addition, taking into account uncertainties enables
one to accommodate the fact that different input data are
normally known with different degrees of certainty, a circum-
stance which should be reflected by the calculation results.
Furthermore, the systematic analysis of uncertainties can pro-
vide insight into the level of confidence of model estimates
and help identify key sources of uncertainties [2]. Data uncer-
tainties have been a concern in the optimization of process
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plants (cf. [3-6]) but less so in relation with plant safety (cf.
[7.8D.

In order to assess the impact of input data uncertainties on
the results they have to be propagated through the calculations.
This propagation is usually performed using the Monte-Carlo
method, either in its straight form or applying effort-reducing
techniques such as Latin Hypercube Sampling (cf. [9]). In any
case, heavy computational demand results.

Alternatives which reduce this demand are the stochastic
response surface method whose application to chemical reac-
tion systems is explored in [2] and a non-stochastic approach
known as homogeneous polynomial chaos. It is founded on the
homogeneous chaos theory [10]. Uncertainty is treated there by
a spectral expansion based on Hermite orthogonal polynomials
in terms of Gaussian random variables. This method was applied
extensively to problems in mechanics (cf. [11]).

Application of the straight Monte-Carlo method to chemical
processes is found in [6] and [7], that of the Latin Hypercube Pro-
cedure in [8]. The treatment of uncertainties affecting chemical
process simulations by means of the polynomial chaos approach
is presented in [12] and [13].

The purpose of the present paper is to show the impact of
uncertainties on the analysis of a chemical process as well as
the design considerations derived therefrom and to compare the
Monte-Carlo and polynomial chaos approaches. This is done by
analyzing the dynamic behaviour of the process step “nitration”
of an existing plant for the production of the explosive hexogen
as a typical example of an exothermal process.

This process would require the reactor to be tripped by dump-
ing its contents into a knock-out tank in case a runaway reaction
should occur. In this context the influence of uncertainties on
assessing the time available for the trip is shown.

The paper is organized as follows: the example process and
the derivation of the kinetic equation is described in Section 2
followed by the process model in Section 3. The treatment of the

Table 1
Operational parameters of the nitration reactor
Parameter Symbol Datum
Volume of the reaction zone \% 630 1
Initial temperature of reaction T(0) 4.0°C
Mass of reactor contents - 970.2kg
Volumetric flow through the reactor v 0.491/s
Concentration of hexamine in feed CHA,in 0.9851 mol/l
Concentration of nitric acid in feed CHNO3.in 20.9087 mol/1
Coolant inlet temperature Tejin —-5.0°C
Area of the heat exchanger (jacket F 7.0m?

and coil inside)
Global heat transfer coefficient U 1.4kW/(m2 K)
Specific heat capacity of the coolant Cpe 3.6kJ/(kgK)

(water plus 25% of methanol)

uncertain quantities, i.e. heat of reaction and the kinetic param-
eters, is dealt with in Section 4 and their propagation through
the calculation by both, Monte-Carlo and polynomial chaos, is
treated in Section 5. Section 6 is devoted to a comparison of the
results. Times available for trip are discussed in Section 7 and
the conclusions are drawn in Section 8.

2. Process description and reaction Kinetics

The production of the explosive hexogen, also known as
RDX, is described in detail in [14]. The plant considered
employs the so-called SH process, in which hexamethylenete-
tramine (hexamine) reacts with nitric acid to form RDX. Its
fundamental step, the nitration, is analysed in more detail below.

The reaction takes place in a continuously stirred tank reac-
tor, which forms part of a cascade of reactors. An excess of nitric
acid by a factor between 8 and 10, as well as reaction tempera-
tures below 20 °C are required for safe operation. The reaction
is started by feeding hexamine via a transportation screw into

Table 2
Physical properties and feed temperatures of the substances involved in the nitration process
Area Datum
Feed
Hexamine C¢HpNy Molar mass Mya 140.19 kg/kmol
Heat capacity Cp.HA 1.256 kJ/(kg K)
Temperature THAin 20°C
Nitric acid HNO3 Molar mass Muno, 63.01 kg/kmol
Heat capacity Cp,HNO; 1.989 kJ/(kg K)
Concentration - Approximately 98.5%
Temperature THNO;3,in 4°C
Products and side products
Hexogen C3HeNgOg Molar mass MRpx 222.12 kg/kmol
Heat capacity Cp.RDX 1.19kJ/(kg K)
Methanediol dinitrate CH>(ONO;)» Molar mass Mc 138.04 kg/kmol
Heat capacity Cp.C 1.926 kJ/(kg K)
Ammonium nitrate NH4NO3 Molar mass Mp 80.05 kg/kmol
Heat capacity Cp.D 1.759kJ/(kg K)
Water HO Molar mass My,0 18 kg/kmol
Heat capacity Cp,Hy0 4.187kJ/(kg K)
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the reactor, which is filled with nitric acid at 4 °C. Operational
details of the reactor provided by a manufacturer are given in
Table 1.

Several reactions take place concurrently. The complex reac-
tion network can be described by the following simplified set of
reaction equations (cf. [15]).

CgH2N4 + 10HNO3 — C3HgNgOg
X)

(Hexamine) (RD

+3CH(ONO2), + NH4NO3 + 3H,0 €))
for the formation of the product and
CeH2Ny4 + 16HNO3 — 6CH>(ONO;),> +4NH4NO;3 2)

for the side reaction. Since no details about the kinetics of
the side reaction are available, the following treatment will, of
necessity, be limited to the main reaction.

The physical properties of the substances needed for the cal-
culations are given in Table 2.

The nitration process is exothermal. Different heats of nitra-
tion are quoted, i.e. 162.5kJ, 293.4kJ, 368.3kJ per mol of
nitrated hexamine [14]. The heat of nitration, —AH,, must
therefore be considered as an uncertain datum (epistemic uncer-
tainty). On the other hand, the data provided in [14] are
insufficient for deriving a temperature-dependent kinetic equa-
tion. Such an equation may be obtained, within narrow limits,
from experimental evidence presented in [15], which is given in
Table 3 along with conversion rates calculated using the equa-
tions stated below.

The rate of the nitration reaction is given by

r(t, T) = kr(T)Clino, CHA(D)"

ER 0 n

where r(z, T) is the reaction rate, A the pre-exponential factor, £
the apparent energy of activation, R the gas constant, n the order
of reaction and T is the temperature.

Since the experiment was conducted with an excess of nitric
acid (weight ratio 11:1) its concentration, CE[NO3’ is considered
as constant in time. The depletion of hexamine is then governed

Table 3

E
= —Aexp (—RT> Chino, CHA(D)" )

Considering that Cya (1) = C%A[l — xa(1)] the solution of Eq.
(4) may be written as

E
+ﬁ 5)

1—
) "
An — 1)C%No3

i) -
[1—xa()]'™" —1

which lends itself to linear regression analysis in the form

4 Mb
1 B .
n{[l—xA(r)]l—"—J Hat 7 ©

in order to obtain the parameters E, A and n of Eq. (3).

The resulting regression coefficients are p, = —25.962 with
a standard deviation of o, =1.782 and uy, =4136.5 with a stan-
dard deviation of o, =491.11. Since both coefficients stem from
the same set of experimental values, they are correlated, the
correlation coefficient p being —0.99774.

Considering that in the experiment the initial concentra-
tions were Cfyo, = 21.388mol/l and Cfj, = 0.888 mol/
1 one obtains, by combining Egs. (5) and (6),
E=upR=34.3909kJ/mol,  A=exp(—ua)ly=2,850,288,090
(1/mol)®?38 min~! =47,504,801 (1/mol)**38 s~ with n=9.958
(the latter was found by varying n and choosing the value
providing the best fit), where y = Cfiyo, (1 — neia!

Table 3 shows that the agreement between the experimental
and calculated values within the range of interest for the present
analysis of the dynamic behaviour of the reactor, viz. 0-23 °C,
is excellent. The quality in describing the experimental values
for 0 °C cited in [14] warrants the application of the equation
to the concentration of nitric acid in the present process, viz.
98.5%, especially for longer times of residence, as can be seen
from Table 4.

3. Basic process model

Based on Eq. (1) the following dynamic model for the reac-
tion may be formulated. It makes use of the concept of the
continuously stirred tank reactor (CSTR) (cf. [16]).

Observed fractional conversions of the nitration of hexamine to hexogen for different temperatures and times of residence with nitric acid of 98% (bold numbers:

values used for determining the kinetic parameters)

Temperature in °C Reaction time in min

Fractional conversion of hexamine (observed) xa

Fractional conversion of hexamine (calculated)

-25 600 0.83
—10 360 0.83
0 120 0.82

10 45 0.82
20 15 0.81
30 10 0.80
35 19 0.80
40 5 0.79
50 5 0.73

60 5 0.63

0.83
0.83
0.82
0.82
0.80
0.80
0.82
0.80
0.81
0.82
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Table 4

Observed fractional conversions of the nitration of hexamine to hexogen at 0 °C for different times of residence and concentrations of nitric acid

Time in min

Concentration of HNO3 (fractional conversion of hexamine (observed) xa)

Fractional conversion of hexamine (calculated)

99% 96%
1.5 - 0.557 0.714
2.5 0.669 0.687 0.730
6.5 0.702 0.753 0.757
12 0.746 0.747 0.774
24 0.809 0.792 0.790
50 0.805 - 0.807

3.1. Process model

e Hexamine (HA)

dCua - .
1% & =VCHA,in — VCua — Vrt, T), Cua(0)=0 (7)
e Nitric acid (HNO3)
dC . .
V=t = VCinoy.in — VCiino, — 10Vr(2, ),
CHno,(0) = 20.91 (8)
e Hexogen (RDX)
dC .
= VCrox + V@ T). Crox@© =0 (9)
e Methanediol dinitrate (C)
dC .
th = —VCe+3Vrt, T), Cc(0) =0 (10)
e Ammonia nitrate (D)
dCp .
VF =—-VCp+Vr(t, T), Cp(0)=0 (11)

e Water (H,O)

dc .
% ;20 = —VCyo +3Vr(t, T),

Cu,0(0) =0 12)

3.2. Process energy balance

6
dTr . ,
ZCiM,-c,,,,-VE =0 — Qcools  T(0) =277.16 (13)
i=1
where 0 = V(Cua,inMuacp uaTua,in + CuNO3,in MENO;

Cp,HNO; THNO3,in — Z?:]CiMiCp,g'T) + (—=AH)r(t, T)V deno-
tes the heat generated and Qcool = trcy (T — T¢in)[1 —
exp(—(FU/mcp )] the heat extracted, with i denoting the
above mentioned substances (HA, HNO3, RDX, C, D, H,0).

3.3. PI controller for coolant flow

drin

dr
dsi _ KmvrT —uc
dr Pi

Ky . K ,
= T(Q — Qcool) + —5h m(0) =2 (14)

. 5i(0)=0 s)

i
o

<

=

o

E 2

£ ch acid/10

c

S 1.5

=

g 1 Hexogen

. =
0.5

2 —

8 Y Hexamine

0 ‘ ; . : . . . ‘ .
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time since start-up in sec

Fig. 1. Evolution of the concentrations of the principal substances with time
(calculated with point values).

sh= e — KmvrT +5i, sn(0) =0 (16)

In Egs. (14)—(16) riz in kg/s is the mass flow of coolant,
K1 =1kg/kW, K=200kg/mV the cooler gain, t=2000s the
cooler time constant, p;=4000s the integrator coefficient,
ue. =288.16 mV the command signal and Kyv/r=1.0mV/K is
the gain in mV in the transducer.

The system is solved using a Runge-Kutta algorithm with
an adaptive time step size. The evolution of the concentrations
of the principal substances involved in the process with time is
found in Fig. 1. The calculations are based on mean values (point
values).

Relevant parameters for the process at steady state are pre-
sented in Table 5.

4. Uncertainties

All parameters involved in the process are beset with uncer-
tainties. Major impacts are to be expected from the uncertainties
affecting the heat of reaction, the reaction rate constant and the
apparent energy of activation. As usual, these quantities are rep-

Table 5

Process parameters at steady state (calculations with point values)
Parameter Quantity
Hexamine feed 243.60kg/h
Hexamine discharge 64.09 kg/h
Nitric acid feed 2323.99kg/h
Nitric acid discharge 1517.12kg/h
Hexogen production 284.47 kg/h
Hexamine consumption per 1t of hexogen 631.06 kg/t
Nitric acid consumption per 1t of hexogen 2836.37 kg/t
Temperature of production 15.67°C
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resented by probability distributions. In the case of the heat of
reaction the Weibull distribution (cf. [17]) was chosen from
among seven different probability distributions, since it pro-
duced the smallest quadratic deviation. The Weibull probability
density function is

Fan(AH:]) = nb(n|AH )" exp(—n |AHL|Y,
|AH|,b,n>0 (17)

The corresponding parameter values are: b=3.85 and

n=0.003274.

The uncertainties of the regression coefficients are supposed,
as usual, to be binormally distributed. Hence, the regression esti-
mators a and b are represented by a bivariate normal distribution
with probability density function (cf. [17])

exp {—(1/2(1 — p%) [((a — pa)/0a)*
~2p((a — pa)/02)(b — [1v)/0D)
+((b — up)/ov)*] }
270,01 m '

o] <1 (18)

faB(a,b) =

0<a,b<oo;, 0,0 >0;

with the mean values, standard deviations and correlation coef-
ficient stated in Section 2.

5. Uncertainty propagation

If the uncertainties represented by Eqs. (17) and (18) are taken
into consideration, Egs. (7)—(16) become a system of stochastic
differential equations. In what follows this will be solved using
the Monte-Carlo and the polynomial chaos approaches.

5.1. Monte-Carlo

The Monte-Carlo approach entails the generation of a large
number of realizations from the probability distributions for the
uncertain quantities involved, viz. Eqgs. (17) and (18), and the
solution of the system of deterministic equations describing the
process with the input data from every set of the realizations.
Every calculation is called a trial. The trials result in a probabil-
ity distribution of the final result for the parameter in question,
e.g. concentrations, production temperature, etc., which are nor-
mally described by their means, variances and percentiles. This
probability distribution reflects the impact of the uncertainties
of the input data on the calculation results.

The major disadvantage of the method is its 1/4/P con-
vergence, with P being the number of trials. This leads to a
considerable calculational effort, which, depending on the com-
plexity of the underlying system of equations, may become
prohibitive.

The realizations from Egs. (17) and (18) are obtained by
generating in the first place random numbers uniformly dis-
tributed on [0,1] and then transforming them into the pertinent
distributions. If Z,, Z,1,..., Zp4 (p=1,..., P denotes the pth
trial) represent these uniform random numbers the following
transformations produce the required results

e Weibull distribution

-InZ,
|AH, | = (19)
n
e Bivariate normal distribution

Up=+/—2InZ,;cos2nZp2),
Vo =+/—2InZ,3c082nZp 4),
Ap =Upos+ u, and
B, = (pUp +4/(1- p2)vp> Sp + b (20)

Ap and B), are the realizations of the coefficients a and b of
Eq. (18).

The uniformly distributed random numbers were generated
using L’Ecuyer’s algorithm (cf. [18]).

As an example the evolution of the hexogen concentration as
a function of time after start-up (the process is shut down every
weekend) is shown in Fig. 2. The differences between the 5th
and 95th centiles are obvious. They would lead to a prediction
of the stationary hourly production of hexogen between 279.28
and 287.14 kg.

5.2. Polynomial chaos

Given the slow convergence of the Monte-Carlo method an
alternative, the spectral expansion of uncertainties based on Her-
mite orthogonal polynomials (cf. [19]) in terms of Gaussian
random variables with mean 0 and variance 1 (cf. [20]), is pre-
sented here. It provides a means of expanding second order
random processes in terms of orthogonal polynomials. Such
processes are characterized by having a finite variance, a require-
ment satisfied by most physical processes. Details are presented
in what follows.

Let
dy
i ay +d 201
represent any one of Egs. (7)—(13), where « and d are the random
quantities.

0.74
0.73
0.72

0.71 Wl ‘
- //ﬂwcemwles
0.69 //
L /
0.68
0.67

4000 6000 8000 10000 12000
Time after start-up in sec

95th centiles

Expected values

Concentration of RDX
in mol/l

14000

Fig. 2. Evolution of the concentration of hexogen with time including uncer-
tainty ranges calculated by the Monte-Carlo method (10,000 trials).
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Table 6

Details of polynomial chaos (according to [11])

k kth polynomial chaos (tD,%)
0 1 1

1 3 1

2 £2-1 2

3 £ 382 6

4 - 682 +3 24

The polynomial chaos expansion then consists in setting

K K
YO =D wOPkE; @ =Y &)

k=0 k=0

K
d =Y d®i&) (22)
k=0
where £ is a random variable and @ (&) the polynomial chaos of

order k (Hermite’s polynomials in the present case). Introduction
of Eq. (22) into Eq. (21) gives

5 dyi(0) L&
D) = )Y Pk (@)
k=0 k=0 j=0
K
+Y_diPi(®) (23)
k=0

The polynomials form an orthogonal basis with respect to the
weight function exp(—&2/2)/~/27, so that multiplication of Eq.
(23) by @ exp(—é2 /2)/ V27 and integration over the domain of
definition, i.e. —o0, 0o, denoted by () leads to

dyi(1) 1 [&E
=——= (e ek, i
G T e \
+d;, 1=0,...,K (24)

where e j; = (PP ;P;) is readily evaluated using the relations

(2k)!

E§2k+1 — O, E%-Zk — 2kk'

with EEF = L /oo e ex <—‘§2> d& (25)
- A/ 27 —00 P 2

In the present case one-dimensional chaos is appropriate,
because the deviation of the process from Gaussian behaviour is
small. In such a case exponential convergence has been proved
[21]. Hence, an order of K =4 ensured sufficient convergence of
the series of Eq. (22), which were therefore truncated with the
fifth term. Table 6 shows the polynomials and their orthogonality
properties.

Cases of strong deviations from Gaussian behaviour may
be treated by increasing the number of dimensions or apply-
ing generalized polynomial chaos, where polynomials other
than Hermite’s are used. Strong non-linearities may require an
increased order of polynomials (cf. [22]). All of this, just as
when a high number of reactions must be considered would

lead to an increase in the number of simultaneous non-linear
equations to be solved. In particular a system of L simultaneous,
in general coupled, first order differential equations would have
to be solved, where
(K + N)!

~ KN
with polynomial order K, dimension N and number of process
equations M. It is obvious that L might become prohibitively
large, if all parameters have to be increased at the same time.
The advantages over the Monte-Carlo method may then be lost.

The above procedure was applied to Eqgs. (7)—(13) using the
stochastic coefficients whose derivation is described below. The
system of seven stochastic equations is thus converted into a
system of L =35 deterministic equations which was solved by
the Runge-Kutta algorithm already mentioned.

If y is a random variable with a continuous distribution func-
tion G(y) and probability density function g(y) which satisfies

(26)

y
G(y) = / ¢y dyr @7

and {®(§)} a set of polynomial chaos whose underlying ran-
dom variable & has the distribution function F(£€) and probability
density function f{¢) such that

3
Fo= [ sende 28)
then the representation of y takes the form (cf. [20])
K
(y, Di(8))
= Di(8), h = 29
y gyk KO, wherey = = g (29)

Evaluation of the numerator (- - -) needs caution because in
most cases y and & belong to different probability spaces. In order
to circumvent this difficulty y and £ are mapped to the probability
space defined by the uniform random variable u € [0,1], i.e.

y=G ') and &=F ') (30)
Hence we have

Chd®) 1

(@2E)  (DIE)
k=0,1,...,K 31

R —1
)/0 G~ (w)d, [F (u)] du,

In the present case F is the standard normal distribution, whose
inverse F~! is readily calculated with a pertinent approximation
(cf. [19]).

The integral in Eq. (31) is evaluated using a 10-point
Gauss—Legendre quadrature.

e Heat of reaction
The above relationships are evaluated by using Eq. (19) to
achieve the transform to [0,1]
(—Inu)'/?

y=6"'w="—" (32)
n

e Reaction rate constant
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Table 7
Comparison of the reaction rate constants velocities kr(7) and their variances
obtained by Monte-Carlo and polynomial chaos

Temperature Monte-Carlo (5,000,000 trials) Polynomial chaos

in °C
Expected Variance Expected Variance
value value
0 12.6865 2.3880 12.6866 2.3639
15 27.9774 15.7349 27.9776 15.5973
30 57.4832 133.3266 57.4829 131.7854

The kinetic equation requires special treatment. Based on
Eqgs. (5), (6) and (20) the reaction rate equation is decomposed
into the following two independent parts:

—1 puoy7 1
¥ =G w) = exp [—uoy — = 220 = (33)
T 1y
_ —/ 1 — p?uoy, — pp
y2 =Gy ' (u) = exp (34)

T

The procedure described by Eq. (31) is applied separately
to Egs. (33) and (34). The following results are obtained:

Ekr(T) = y1,052,0 (35
for the expected value and
K K
Varkg(T) =Y 11> _¥5x — (31.0y2.0)° (36)
k=0 k=0

for the variance. In deriving Eq. (36) the following rela-
tionship for calculating the variance of the product of two
independent random variables a and b was used [23].

oz = E(@*b?) — (Ea)*(Eb)* = Ea”Eb*> — (Ea)*(Eb)®
- [(Ea)z + a.f] [(Eb)z + a,ﬂ — (Ea)*(Eb)*

= 020} 4 (Eb)*0? + (Ea)’o} (37)
The result is represented by a normal distribution with the
expected value calculated according to Eq. (35) and the vari-
ance according to Eq. (36). Its representation by polynomial
chaos follows the above procedure.

A comparison of the results obtained with this procedure
and the corresponding Monte-Carlo simulation presented in
Table 7 shows that this approximate approach is feasible for

Table 8
Some key parameters of the process calculated according to different procedures

U. Hauptmanns / Chemical Engineering Journal 140 (2008) 278-286

0.76
0.74
0.72

0.7
0.68
0.66
0.64
0.62
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L
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Concentration of RDX
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0.6 T
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Fig. 3. Evolution of the concentration of hexogen with time including uncer-
tainty ranges calculated by polynomial chaos.

the problem at hand, the maximum deviation (variance for
30°C) being approximately 1%.
e Reaction rate

Applying the above approach to the constant of reaction the
rate of reaction (cf. Eq. (3)) is calculated as follows

[ re e [

kR = ———

(@2(&))

(S cano [F

=1

n

K

ZCHNO3,IQ)I [F_l(u)] du, k
=1

0,1,....K (38)

where kﬁl(u) is the inverse of a normal distribution with the
expected value from Eq. (35) and variance from Eq. (36). Cya s,
CHNo,,1 are the spectral coefficients of the concentrations of
hexogen and nitric acid, respectively. The integral in Eq. (38) is
evaluated using a 10-point Gauss—Legendre quadrature.

As an example the evolution of the hexogen concentration
with time is shown in Fig. 3. The differences between the 5th and
95th centiles are considerable. They would lead to a prediction
of the stationary hourly production of hexogen between 277.92
and 290.97 kg.

6. Comparison of results

Key parameters of the process were calculated using both,
the Monte-Carlo and polynomial chaos procedures, as well
as point values. They are shown in Table 8. In the Monte-
Carlo calculations for the steady state the coolant flow
was fixed at an average value in order to create the same

Parameter Point values Monte-Carlo (10,000 trials) Polynomial chaos

5th Mean 95th 5th Mean 95th
Hexamine discharge in kg/h 64.09 62.40 64.88 67.36 59.99 64.10 68.22
Nitric acid discharge in kg/h 1517.12 1509.55 1520.70 1531.84 1498.69 1517.21 1535.72
Hexogen production in kg/h 284.47 279.28 283.21 287.14 277.92 284.44 290.97
Production temperature in °C 15.67 6.70 13.14 19.59 9.04 15.70 22.36
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Fig. 4. Time available for reactor trip after cooling failure as a function of the
instant of failure calculated with polynomial chaos (point values coincide with
the expected values of the polynomial chaos calculations; asterisks: Monte-Carlo
calculations).

boundary conditions as for the polynomial chaos, which is
essential for comparison. Otherwise the control would try to
compensate parameter fluctuations by raising or decreasing
coolant flow beyond ranges normally provided for in con-
trols.

The agreement of the mean values is perfect. Polynomial
chaos leads to slightly larger uncertainty ranges than Monte-
Carlo, the differences lying practically always below 1%.

The calculation times are a few minutes for polynomial chaos
as compared with approximately 10h for Monte-Carlo on the
same PC.

7. Assessment of the times available for trip

Should the reactor cooling fail, the reaction temperature
would increase with a gradient depending on the status of the
reactor at the instant of failure. For such an occurrence a sys-
tem is provided which would discharge the reactor contents by
gravity into a knock-out tank below the reactor. Fig. 4 shows the
times which are available for dumping if a maximum tempera-
ture of 23 °C is tolerated as a safe distance from runaway. It is
obvious that uncertainties affect the prediction, which should,
of course, be on the safe side. In the present case a minimum
value of the 5th centile of 39.2 s is predicted as compared with
102.9s if point values are used. In order to ensure a success-
ful functioning the result accounting for uncertainties should be
used. Given that the discharge pipe has a diameter of 200 mm,
a conservative calculation shows that 15.4 s would be sufficient
for complete discharge, leaving the difference in time for the
activation of the trip. The above statement means that there
is a 95% chance of dumping in time if no more than 39.2s
are needed. It must be kept in mind, however, that these low
available times just prevail for about 17.2 h, which are only part
of the period of the 120 h of weekly operation. Hence, assum-
ing demands uniformly distributed over the production period
there is a probability of 0.14 that a demand on the system takes
place during the 17.2h mentioned. This leads to a probability
of failure (assuming the technical components involved work
perfectly) of 0.0072. About 20h after start-up the 5th centile
reaches an asymptotic level of 48.8 s. Hence, the probability of
failure is lower outside the time interval of 17.2h mentioned
above.

8. Summary and conclusions

The impact of data uncertainties on the prediction of
the dynamic behaviour of a typical exothermal process is
shown. Considerable differences as compared with the con-
ventional calculations based on point values result. These
should be considered in both, in design and safety calcula-
tions.

Two methods for the propagation of uncertainties through the
calculations are presented, Monte-Carlo and polynomial chaos.
The difference in computing time is more than two orders of
magnitude. Therefore the polynomial chaos approach is to be
preferred, especially if many parameter variations are required
as, for example, in the case of calculating the time available for
a reactor trip by dumping.

However, it should be borne in mind that the conceptual sim-
plicity makes Monte-Carlo much easier to implement, which
may be a criterion for its choice. Additionally, the advantage of
polynomial chaos may dwindle if there are two many uncertain
quantities involved or the deviation from Gaussian behaviour is
too strong.
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